Tetragenetics

SionX™: A High-Yield Strategy for the Production of Recombinant Human Ion Channels for Antibody and Small Molecule Drug Discovery

Aurora Ion Channel Retreat 6/25/14

Technology Overview: TETRAHYMENA

Microbial cells

Combining both worlds

Animal cells

- Rapid, high cell density growth
- Inexpensive media
- Facile genetics
- Easily frozen for longterm storage

- Sophisticated eukaryote
- Mammalian-like PTMs
- No cell wall
- Enhanced features for production of membrane and secreted proteins

Tetrahymena thermophila as an Expression Host

- Common pond water ciliate
- First "animal-like" cell to be grown in pure culture
- Important model for cell biology & genetics for >50 years
 - Dynein as first microtubule-based motor
 - Self-splicing RNA (Nobel Prize Cech)
 - Telomere structure and biosynthesis (Nobel Prize Blackburn & Greider)
 - Elucidation of the histone code (Canada Gairdner Award Allis)
 - Role of small RNAs in chromatin dynamics and DNA rearrangement (Gorovsky; Allis)
 - Large well-annotated genome (~24,000 genes)

Unique Features for Enhanced Production of Membrane and Secreted Proteins

- Vector Biology
 - High copy number ribosomal DNA vectors
 - Constitutive and Inducible promoters
- Metabolism geared towards membrane protein production
 - Expanded cell surface due to hundreds of cilia
 - No cell wall (unlike yeast and bacteria)
- Near uniform N-glycosylation
- Ability to "humanize" PM lipids
- Expanded gene families for membrane transporters

Vector Biology

Post-translation Modifications

- Glycosylation
 - Minimal glycoform heterogeneity

- Lipidation
 - GPI-addition
 - Prenylation (farnesyl transferases; geranylgeranyl transferases; CaaX protease; methytransferases)
- Phosphorylation
 - 1,069 predicted kinases including PI3 kinase

Highly Adaptive Physiology and Behavior

 Large gene families for each of the 4 major families of membrane transporters

Species	ABC	MFS	VIC	P-type ATPase
	•			
T. thermophila	161	125	332	91
E. histolytica	18	4	1	19
D. discoideum	61	27	3	24
T. pseudonana	55	42	22	22
C. parvum	13	8	2	9
P. falciparum	14	15	1	11
Encephalitozoon cuniculi	11	2	0	4
N. crassa	31	141	2	19
S. cerevisiae	24	85	2	16
S. pombe	9	58	1	13
A. thaliana	108	90	35	46
C. elegans	48	134	63	22
D. melanogaster	51	136	31	19
H. sapiens	47	81	89	32

Eisen et al. (2006). Macronuclear Genome Sequence of the Ciliate *Tetrahymena thermophila*, a Model Eukaryote. PloS One

TETRAEXPRESS™: Standard Workflow for Production of Recombinant Proteins

Expression Plasmid Preparation

- Codon-optimize gene
- · Gene synthesis
- · High copy vector
- Epitope tag selection
- Promoter selection

Cell Line Screening and Selection (Dot Blot/ELISA)

- Biolistic transformation
 - 10-20 clones screened
- Identify high expressing clones
- · Single cell isolates

Protein Expression Analysis Western Blotting & Localization

Total Cell Line Development Project: ~9-16 weeks

Recombinant MPs Localize to the Cell Surface

ION CHANNELS: Current State-of-the-Art

- Among the most difficult proteins to express in useful amounts
 - Typically produced in HEK or CHO cell lines
- Low level expression represents major bottleneck to therapeutic Ab discovery/development and structurebased drug design
- Even when expressed, a majority of recombinant protein fails to reach the plasma membrane and is likely improperly folded

SionX™-TTG's Technology Suite for Ion Channel Production

Inducible growth cycledependent promoters Proprietary growth conditions

- High-level expression
- Abundant cell surface localization
- Properly folded and functional

Tetragenetics

SionX™: Overexpression of Human Ion Channels

SionX™: Robust Expression

- >100 fold increase relative to HEK293 cells on a per/cell basis
- >50 fold when compared by total protein

SionX™: Expression Optimization

Growth conditions

- Expression levels highly dependent on culture conditions
- Certain conditions favor trafficking to plasma membrane

SionX™: Cell Surface Trafficking

Roughly 20-30% of protein at the plasma membrane

SionX™: Confirmation of Correct Fold

- Kv1.3 Voltage-gated K+ channels (Kv)
 - Tetrameric molecules--six putative α -helical transmembrane segments
 - Target for immunosuppression (multiple sclerosis, rheumatoid arthritis, type-1 diabetes mellitus and contact dermatitis)
- ShK Toxin
 - Blocks Kv+ channels by binding with high affinity (Kd <11pol/L) to external vestibule formed by tetramer
 - Found to undergo conformational changes when bound to 'Shaker K' channel suggesting induced fit model may be present in toxin-channel interaction

SionX™: Confirmation of Correct Fold

Specific Toxin: ShK-TAMRA (10 nM) Competing Toxin: Margatoxin (MgTX) Non-competing Toxin: Iberiotoxin (IbTX)

SionX™-Suitable for a Wide Range of Channels

	Expression	Plasma Membrane Localization	Purification	Correct Folding	Functionality
Nav1.x	X	X	Χ	Χ	Χ
Nav1.8	X	X	Χ	Χ	Χ
Kv1.3	X	X	Х	Χ	TBD
Cav2.2	X	Χ	TBD	TBD	TBD
TRPCx	X	X	TBD	TBD	TBD
Kv2.1	X	X	TBD	TBD	TBD

- Robust expression
- Plasma membrane trafficking
- Correctly folded
- Functional

Tetragenetics

SionX™: Drug Discovery Toolbox

SionX™: Subcellular Fractions

Enriched plasma membrane fractions – "pellicles"

Plasma membrane vesicles

SionX[™]: Whole-cell Ghosts (Pellicles)

- Minimally processed "crude" plasma membrane fractions
- Enable therapeutic antibody discovery & production

Isolated pellicles

SionX™: Plasma Membrane Vesicles

- Ideal for Antibody production
 - Uniform diameter
 - Repetitive surface display
 - 5-7 fold enrichment vs.
 pellicles
 - Up to 5% of total protein as recombinant target

Nav 1.8 containing membrane vesicle Negative stain EM

Size Distribution by Number

SionX™: Membrane Vesicle Validation

Steps

- Homogenization of cells
- Differential centrifugation
- Two phase enrichment
 & harvest of "right-side out" MVs

Cells expressing recombinant HA

SionX™: Purified Proteins

- Recovery: ~1mg/L
 - >85% purity (Silver stain)

- Ephys Analysis
 - Artificial Bilayer
 - Nanion Port-a-Patch
 - GUV/Nav1.8 Proteoliposome fusion

SionX™: Enabling Drug Discovery

Thanks

- Our Pharma Partners
- Tetragenetics Team
 - Paul Colussi
 - Ashot Papoyan
 - Yelena Bisharyan
 - Janna Bednenko
 - Alka Agarwal

Tetragenetics

Walden Sq. Science Park Cambridge, MA

For Partnering and Licensing Information Please Contact:

John Reilly, V.P. Business Development

Office: 617-229-5224

<u>jreilly@tetragenetics.com</u>

85 Bolton St., Cambridge, MA 02140