WNK-SPAK/OSR1-NKCC1 Signaling Pathway in Ischemic Brain Edema and Injury

Dandan Sun
University of Pittsburgh
NKCC1 in Cl^-_i Homeostasis and GABA Function

a High $[\text{Cl}^-_i]$ (immature)
- Depolarization
- K^+ flow
- Cl^- entry
- GABA_A
- Na^+/K^+ pump
- NKCC1
- 2Cl^-
- VDCC
- Ca^{2+}
- CLC2

b Low $[\text{Cl}^-_i]$ (mature)
- Hyperpolarization
- K^+ outflow
- Cl^- exit
- GABA_A
- Na^+/K^+ pump
- NKCC1
- 2Cl^-
- VDCC
- CLC2

Nature Reviews | Neuroscience

Inhibition of NKCC1 Reduces Ischemic Infarction

Yan et al., J Cereb Blood Flow Metab 2001

Chen et al., JCBFM 2005
Ion transporters in Ionic Dysregulation

Kahle KT et al., Physiology 2009

Boscia F et al., Glia 2016
Questions

➤ How NKCC1 is stimulated in ischemic brain?

➤ And what kinase signaling pathway stimulates NKCC1 phosphorylation and activation in ischemic brain?
Ion Transporter Kinases: The WNK-SPAK /OSR1 signaling pathway

Phospho-activation of NKCC1 Protein in Ischemic Brains

Begum et al., Stroke, 2015
Working Hypothesis

Diagram 1

Cerebral Ischemia

WNK3

SPAK

NKCC1

Disruption of Ionic Homeostasis

Grey/White Matter Injury

Neurological Deficit

Aim 1

Aim 2

Aim 3

Seth Alper, M.D., Ph.D.
Harvard University

Kristopher Kahle, M.D., Ph.D.
Yale University
WNK3 KO Mice Exhibit Reduced ADC Lesion Size in the MRI study

T. Kevin Hitchens, PhD

Hanshu Zhao, MD

Rachel Nepomuceno Xin Gao, MD

Zhao et al., JCBF&M, 2016
Less severe ischemic infarct in SPAK HET and SPAK KO mice

Zhao et al., JCBF&M, 2016
Neurological function deficit tests after ischemic stroke

- Corner test
- Rotarod test
- Adhesive tape removal test
- Neurological score
Improved neurological function in WNK3 KO mice

Zhao et al., JCBF&M, 2016
Improved neurological function in SPAK HET and KO mice

Zhao et al., JCBF&M, 2016
WNK-Cab39-NKCC1 signaling in ischemic stroke of hypertensive rats
Selective Elevation of WNK Expression in SHRs after Ischemia

(a) Membrane

(b) Cytosol

(c) Membrane

(d) Cytosol

Iqbal Bhuiyan, Ph.D

Shanshan Song, MD

Arohan Subramanya, MD

Bhuiyan et al., JCBF&M, 2016
Developing inhibitors against the WNK-SPAK/OSR1 pathway
Anti-parasitic drug Closantel as a SPAK inhibitor in reducing infarct and hemispheric swelling

Iqbal Bhuiyan, Ph.D

Brad Molyneaux, MD, Ph.D

Bhuiyan, et al., unpublished
Novel WNK inhibitor WNK463 is not effective in reducing infarct and hemispheric swelling

Bhuiyan, et al., unpublished
Summary

- The evolutionarily-conserved WNK-SPAK/OSR1 kinase signaling pathway regulates the bumetanide-sensitive NKCC1 protein in ischemic brain.

- WNK3 function is associated with the pathophysiology of neuronal and oligodendrocyte injury following ischemic stroke.

- Our data highlight the WNK-SPAK/OSR1-NKCC1 signaling pathway as a novel, potential therapeutic targets for neuroprotection and cerebral edema following stroke.
Lab Members
Gulnaz Begum, PhD
M. Iqbal Bhuiyan, PhD
Karen Carney, PhD
Yan Yin, MD, PhD
Shanshan Song, MD, PhD
Victoria Pigott, BS
Nabiul Hasan, PhD
Xiudong Guan, MD
Eric Li, BS
Rachana Nayak
Abhishek Mishra

Collaborators
UW-Madison
 John Kuo, MD, PhD
 Pelin Cengiz, MD
 Peter Ferrazzano, MD

Harvard University
 Seth Alper, MD, PhD

Yale University
 Kris Kahle, MD, PhD

University of Cincinnati
 Gary Shull, PhD

Taiwan National Defense Medical Center
 Sung-Sen Yang, PhD
 Shih-Hua Lin, PhD

UC-San Francisco
 Ray Swanson, MD, PhD
 Anders Persson, PhD

Univ. of Pittsburgh
 Jun Chen, MD
 Elias Aizenman, PhD
 Edward Dixon, PhD
 Guodong Cao, PhD

Funding
NIH NINDS
VA BLR&D
NIH ICTR KL2
AHA (EIA-540154)

Arohan Subramanya, MD
T. Kevin Hitchens, PhD
Adam Straub, PhD
Brad Molyneaux, MD
Thank You
Bumetanide Blunts Worsened Ischemic Injury in SHRs

Protocol
- Post-MCAO
- Saline or BMT (daily)
- Biochemical assays
- Neurological function tests

Graph (b)
- Comparison of rCBF (%) between WKY and SHR over time.

Graph (d)
- Infarct volume comparison between WKY and SHR.

Graph (e)
- Swelling volume comparison between WKY and SHR.

Graph (f)
- Latency to stand-off test between WKY and SHR.

Graph (g)
- Neurological score over time after reperfusion for WKY, WKY + BMT, SHR, and SHR + BMT.

Bhuiyan et al., JCBF&M, 2016
SPAK/OSR1 Phosphorylation and Degradation of tSPAK in SHRs after Ischemia

(a) Membrane

(b) Cytosol

(c) Membrane

Bhuiyan et al., JCBF&M, 2016
Up-regulation of Calcium-binding Protein 39 (Cab39)