

QPatch applications on iPSCderived cardiomyocytes and neurons

Precision Medicin & Ion Channel Retreat 2016 Guangzhou, China November 11, 2016

Kazuya Tsurudome Ph.D. Senior Application Scientist, Biolin Scientific K.K.

© Copyright Biolin Scientific 2014

- 1. Introduction Automated patch clamp and iPSderived cells
- 2. iPS-derived cardiomyocytes
- 3. iPS-derived neurons
- 4. Conclusion

History of Automated Patch Clamp

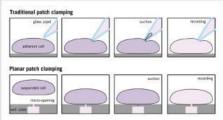
Development

Huxley

Prize share: 1/3

The Nobel Prize in Physiology or Medicine 1963

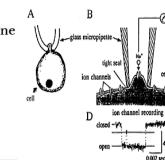
Sir John Carew Eccles Alan Lloyd Hodgkin Prize share: 1/3 Prize share: 1/3

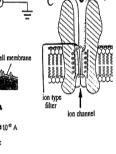


Applications

Planar patch clamp yr2001

Qpatch (16/48 channel) Qube (384 chennels)


yr2014


 $\label{eq:londow} \begin{array}{l} {\sf LONDON-(BUSINESS WIRE)}{\sf value} \ {\sf WSD 21.4bn} \ {\sf by end-2018}, \ {\sf driven largely} \ {\sf by deeper understanding of channelopathies and} \ {\sf ongoing advances in electrophysiology, particularly} \ {\sf automated electrophysiology}. \end{array}$

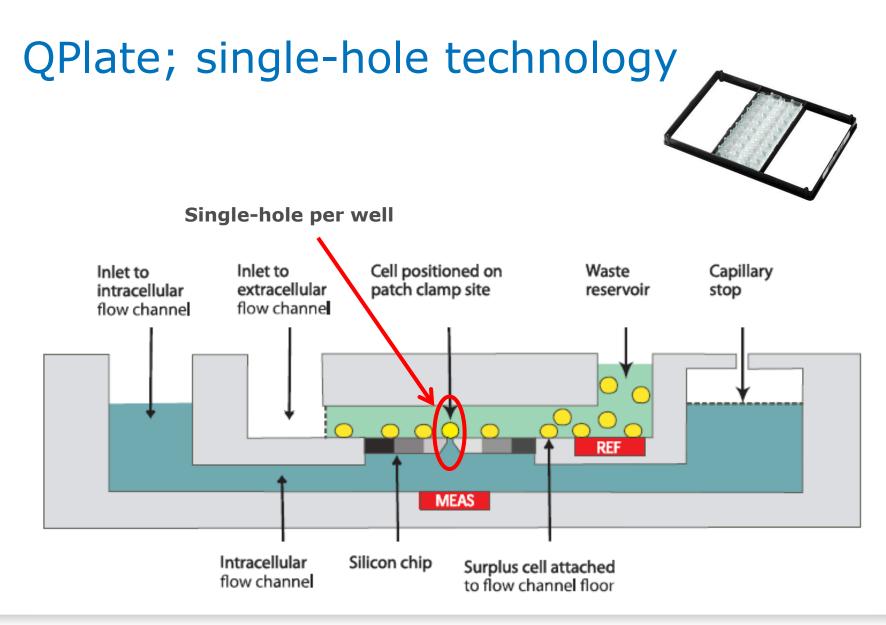
+30 mV (3)_____t 40 D Na* channels close Ca*2 channels open Na⁺ Na⁺ K Sodium gates Na⁺ Na⁺ Potassium nates dose open 0 and I_k generate B channels a plateau Depolarizatio open Active sodium ∫ ≝_40 and potassium _______Na⁺___Na⁺____ Na⁺channels Ca*2 and K Gate threshold A -55 mV tepolarization open -80 close Rest Stimulus potential RMP -70 mV (Na⁺ (1) Na⁺ channels remain inactive 120 Na⁺ -90 mV Hyperpolarization 200 400 600 0 t (mseg)

The Nobel Prize in Physiology or Medicine 1991

Whole cell patch clamp system

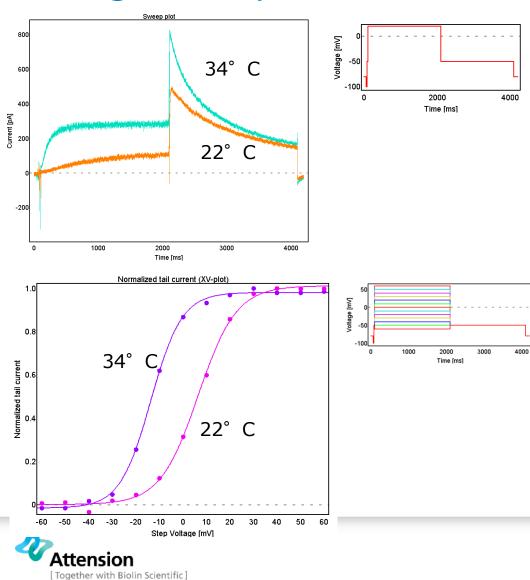
- Need to keep cells/animals alive in good condition
- Whole cell patch clamp configuration by manipulator and syringes
- Run voltage protocols and apply drugs manually
- Every step performed by skillful researcher

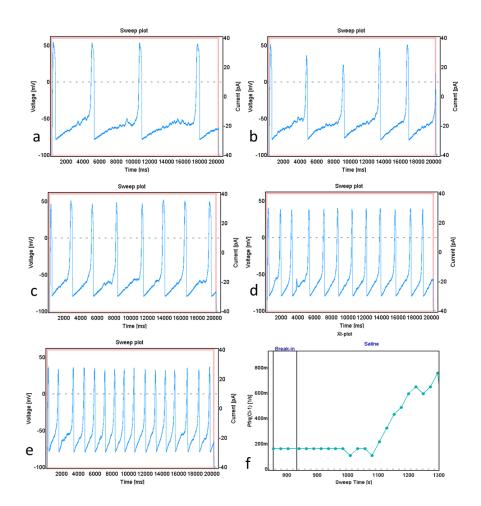
Time consuming experiments



QPatch 16/48 channel automated patch clamp system

- Automated cell preparation
- Whole cell patch clamp configuration by pressure system
- Programmed assays are conducted by robot and amplifiers
- Precise auto drug application
- 100% Unattended system after 'start'




Other features: Temperature control with voltage clamp

 Currents were recroded from hERG expressing CHO cells.
The experiments were performed at 22°C(orange) or 34°C(green).

 I-V plots showed a shift of activation curve. There was about -15mV shift of V_{0.5} at 34°C(purple) compared to 22 °C(pink)

Other features: Current clamp

- Membrane potentials were recroded from hERG expressing CHO cells. The experiments were performed at 22°C or higher temperature up to 34°C.
- The pulse frequency was 0.16pulse/sec at 22 °C and it increased up to 0.76pulse/sec at 34°C

Automated systems with cultured cells

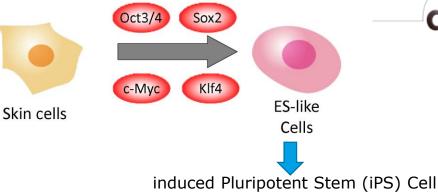
- Scalable
- Stable cell condition
- Cell lines stably expressing specific ion channels
- Suitable cells (such as CHO or HEK293 cells) for planar patch


Nowadays, we have a demand of testing iPSC-derived cells such as cardiomyocytes or neurons on automated patch clamp system

Induced Pluripotent Stem Cell (iPSC)

Discoveries

2012 Nobel Prize in Physiology or Medicine



Shinya Yamanaka University of Kyoto, Japan Photo Credit: Center for IPS cell Research and Application, Kyoto University

John B. Gurdon Gurdon Institute in Cambridge, UK

4 factors

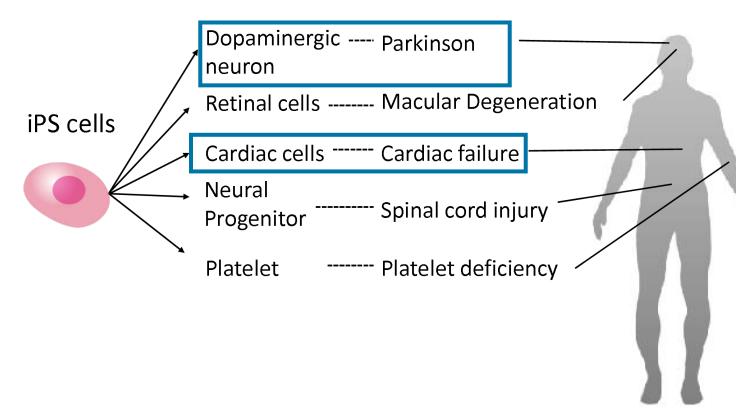
Mouse 2006 Human 2007

From Dr. Yamanaka's Novel prize lecture

Commercially available

TakaRa

axio GENESIS


iPSC-derived cells (cardiomyocytes/neurons etc.)

> CELLUIAR Dynamics international a FUJiFILM company

iPSCs for research and application

From Dr. Yamanaka's Novel prize lecture

Cardiomyocytes

- iCell Cardiomyocytes by Cellular Dynamics
- Cor.At, Cor.4U by Axiogenesis AG

Neurons

Dopa.4U by Axiogenesis AG

ReproNeuro by ReproCELL

CELLUIA

Dynamics

international

a FUJIFILM company

Cardiomyocytes

• iCell Cardiomyocytes by Cellular Dynamics

• Cor.At, Cor.4U by Axiogenesis AG

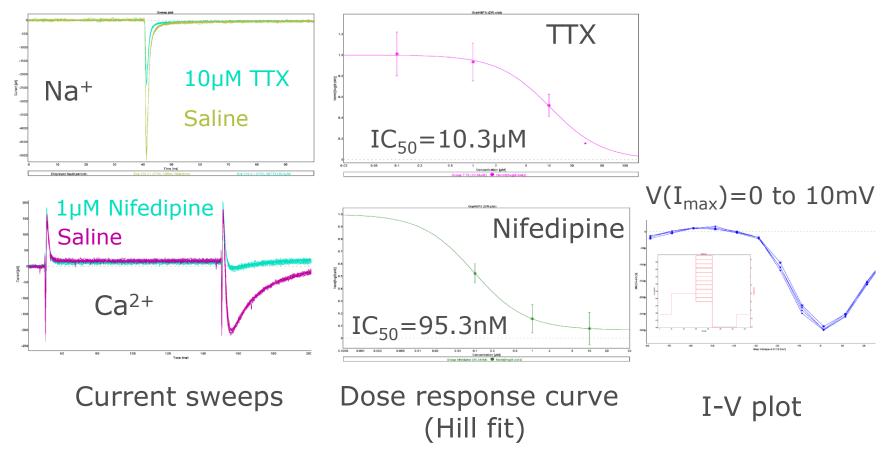
iCell from CDI

- Seals were obtained from 53% of cells. Whole cell configuration rate was 22%
- The currents observed: Na⁺>K⁺>Ca²⁺

Detachment: Trypsin Cell suspension media: EX-Cell ACF CHO media

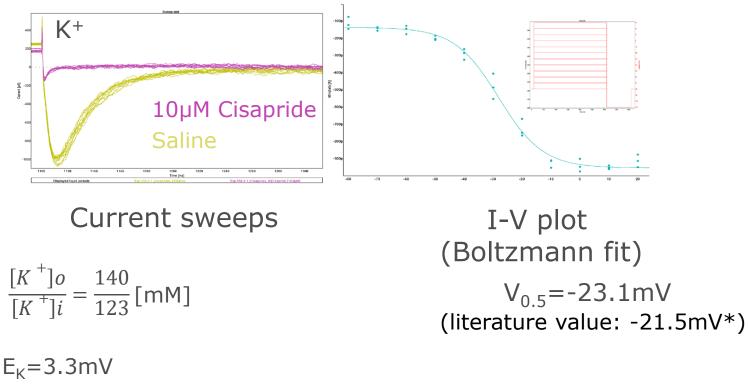
	Single-hole		Single-hole	Multi-hole
Seal	 53 % (±12, n=9)	Cell size	29 pF (±15, n=41)	N.D
		Cells expressing $\mathbf{I}_{_{Na}}$	91 % (±16, n=40)*	N.D
Whole-cell	22 % (±13, n=9)	Cells expressing I _{ca}	41 % (±39, n=58)*	N.D
		Cells expressing \mathbf{I}_{κ}	80 % (±35, n=17)*	N.D
		Usable I _{Na} data/QPlate	16 % (±10, n=224)	58 % (±22, n=80)
		I _{Nav} amplitude	-3.5 nA (±2.2, n=24)	-6.4 nA (±42., n=46)
		IC ₅₀ TTX for I _{Na}	10.3 µM (±0.5, n=6)	6.3 μM (±4.5, n=12)
		Tau for I _{Na} inactivation***	0.85 ms (±0.29, n=22)	0.99 ms (±0.16, n=20)

Ringer solution used for current recording


- Extracellular solution for I_{Na} and I_{Ca} (in mM)
 - 120 NaCl, 5 KCl, 3.6 CaCl2, 1 MgCl2, 20 TEA-Cl, 10 HEPES. pH7.4
- Intracellular solution for I_{Na} and I_{Ca} (in mM)
 - 120 CsCl, 3 MgCl2, 10 EGTA, 5 HEPES, 5 MgATP. pH7.3

- Extracellular solution for I_{K} (in mM)
 - 15 NaCl, 140 KCl, 1.2 CaCl2, 1 MgCl2, 10 HEPES. pH7.4
- Intracellular solution for I_{K} (in mM)
 - 5.374 CaCl2, 1.75 MgCl2, 3.125/10 KOH/EGTA, 120 KCl. pH7.2

iCell from CDI


• IC_{50} values of TTX, Nifedipine were in range of those values for $Na_V 1.5$, $Ca_V 1.2$ channels

iCell from CDI

 Half activated voltage step (V_{0.5}) of tail K⁺ current was similar to literature value (-23.1mV vs -21.5mV*)

* Sanginetti and Jurkiewicz 1990

Cor.At (ESC derived mouse cardiomyocyte) from Axiogenesis


Detachment: Trypsin

Cell suspension media: EX-Cell ACF CHO media

	Single-hole		
Seal	60.9 % (±17, n=4)		
Whole-cell	50 % (±11, n=4)		
Subject		Result	
Viability after harvest procedure (%)		87± 3, n= 4	
Size of cell (pF)		17 ± 7, n= 112	
Peak I _{Na} (pA) (at -30 mV)		1842 ± 2521, n= 52	
Current density I _{Na} (pA/pF)		104 ± 129, n= 52	
Cells with recordable I_{Na} amplitude (%)		68 (15/22)	
Peak I _{Ca} (pA) (at +10 mV)		35 ± 27, n= 32	
Current density I _{Ca} (pA/pF)		2 ± 1.5, n= 32	
Cells with recordable I_{Ca} amplitude (%)		55 (12/22)	

Cor.At (ESC or iPSC derived mouse cardiomyocyte) from Axiogenesis

10µM

300

-60

-40

-20

0

Step Voltage [mV

20

40

250

-300

50

100

150

Time [ms]

200

Cor.4U from Axiogenesis

Detachment: TrypLE Express

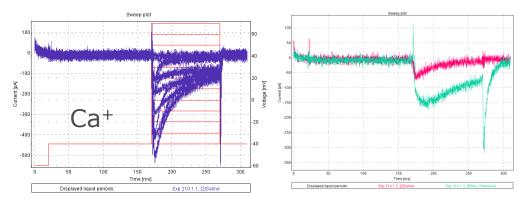
Cell suspension: manually suspended with EC

Solution	Whole cell method	R seal [MΩ]	R whole cell [MΩ]	Success rate (%)
Physiological	Suction	712	485	18.7
Physiological	Perforated	1255	561	18.8
KF	Suction	511	613	27.3
KF	Perforated	469	886	57.1

Extracellular solution:

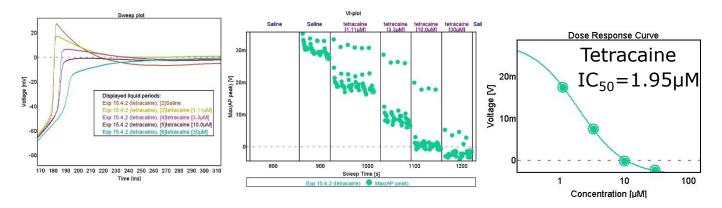
EC000: 145 NaCl, 4 KCl, 1 MgCl₂, 2 CaCl₂, 10 HEPES, 10 Glucose (mM), pH7.4

Physiological intracellular solution:

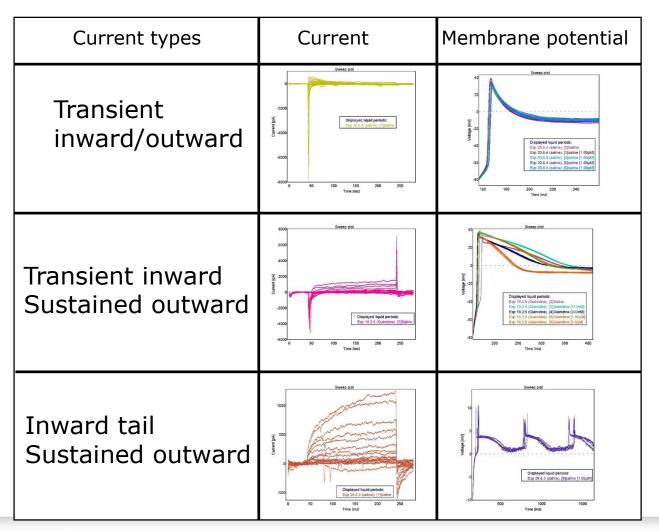

IC000: 120 KCl, 1.75 MgCl₂, 5.374 CaCl₂, 31.25/10 KOH/EGTA, 10 HEPES, 4 Na₂-ATP (mM), pH7.2

KF containing intracellular solution:

IC700: 120 KF, 20 KCl, 10 HEPES, 10 EGTA (mM), pH7.2



Cor.4U from Axiogenesis

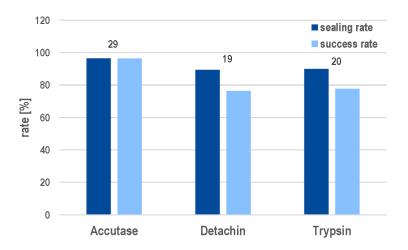

Reference: 1µM FPL 64176

Membrane potentials (Current clamp recording)

Cor.4U from Axiogenesis

Neurons

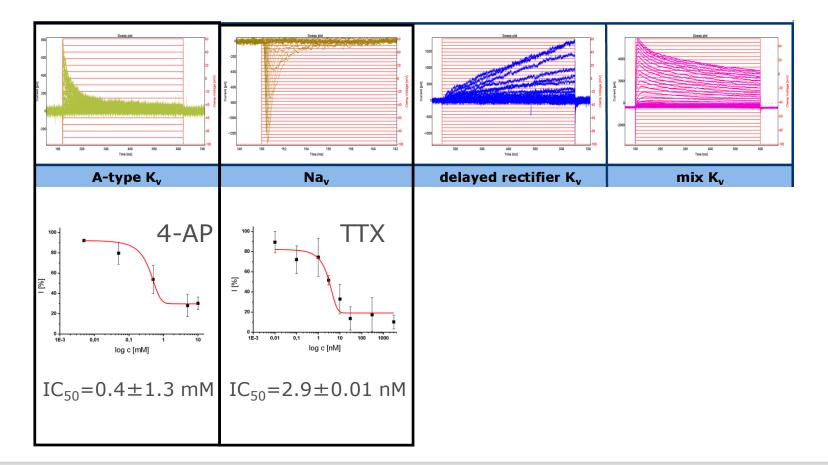
- Dopa.4U by Axiogenesis AG
- ReproNeuro by ReproCELL



Dopa.4U from Axiogenesis

	attached cells	compl. experiment	seal	whole cell with good Rs
number of cells	380	209	217	125
Success rate	67%	55%	57%	33%

Detachment: Accutase, Detachin or Trypsin Cell suspension: manually suspended with EC



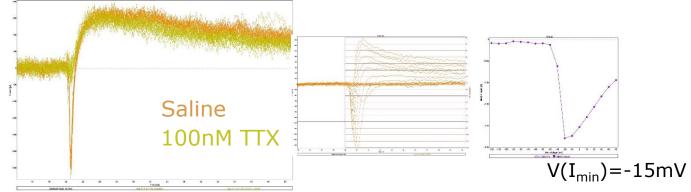
Ringer solution used for current recording from neurons

- Extracellular solution (in mM)
 - 145 NaCl, 4 KCl, 1 MgCl₂, 2 CaCl₂, 10 HEPES, 10 Glucose, pH7.4
- Intracellular solution (in mM)
 - 120 KF, 20 KCl, 10 HEPES, 10 EGTA, pH7.2

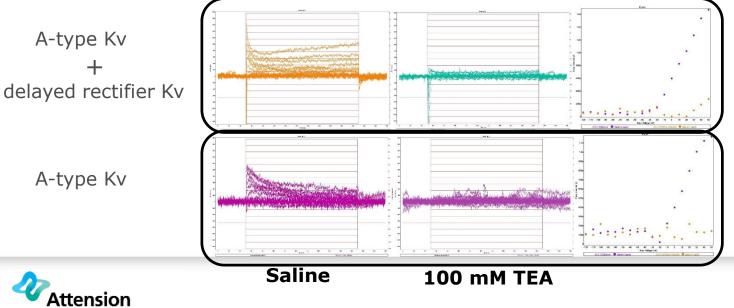
Dopa.4U from Axiogenesis

ReproNeuro from ReproCELL

Detachment: TrypLE Cell suspension media: EX-Cell ACF CHO media


	Single-hole	Currents	%
Cell attached	45% (±12, n=19)	Inward	39
Whole-cell	26% (±11, n=19)	Outward	61
WC per cell attach	57% (±19, n=19)		

	R seal	R whole cell
>100MΩ	117 (98.3 %)	119 (100%)
>500MΩ	52 (43.7 %)	88 (73.9%)
>1000MΩ	36 (30.3 %)	69 (58.0%)
Average [M Ω]	1049.6	1285.0


ReproNeuro from ReproCELL

Inward current

Outward current

[Together with Biolin Scientific]

Summary

- **Success rates** were 50-60% at sealing state and then dropped to 20-30% at W.C. Those success rates were strongly affected by the harvesting method and whole cell method.
- Low cell density: The cell attached success rate did not achieve near 100%, which is probably because of the low cell density. (the whole cell configurations were successfully obtained over 50% of the attached cells)
- Excitability: The recorded membrane currents and membrane potentials were consistent with the channels expressed in each cell types. However, the channel expression was not even and the excitability strongly depends on the current expression pattern.

Acknowledgement

Sophion A/S

- Rikke S Perrier
- Denise Franz
- Hervør L Olsen

NMI TT Pharmaservices

Timm Danker

Thank you!!

