Targeting Voltage-Gated Sodium Channels for the Treatment of Epilepsy

Christopher Makinson, PhD
Postdoctoral Fellow
Stanford University
Department of Neurology and Neurological Sciences
Huguenard Lab

Epilepsy Overview

- Excessive neuronal activity and hypersynchrony
- Affects ~3-4% of people in their lifetime
- Genetic vs. symptomatic epilepsy
- Co-morbidities are common in epilepsy
- ~30% of patients do not respond well current treatments

Background: Voltage-gated sodium channel (VGSC) epilepsies

VGSC genes: Epilepsy risk genes SCN5A SCN10a *SCN8A* ← Epilepsy SCN9A SCN11A Red – Brain Purple – Skeletal Muscle

Blue – Heart Green – PNS

Black - Ubiquitous

VGSC blockers: Antiepileptic drugs

Phenytoin

Carbamazepine

Lamotrigine

Felbamate

Topiramate

Oxcarbazepine

Zonisamide

Rufinamide

Lacosamide

Eslicarbazepine acetate

Thalamocortical seizures by loss of *Scn8a*

Absence seizures detected in the cortex and thalamus

Knockdown of *Scn8a* in RT causes thalamocortical seizures

Targeting *Scn8a* in adult animals confers resistance to proconvulsants

Deletion of *Scn8a* confers resistance to *Scn1a* epilepsies

Targeting *Scn8a* for the treatment of temporal lobe epilepsy

Hippocampus slice

Targeting *Scn8a* reduces epileptiform hippocampal bursting *in vitro*

Targeting *Scn8a* in the hippocampus reduces seizures *in vivo*

Targeting *Scn8a* in treatment-resistant temporal lobe epilepsy

Wong, Makinson et al., Scientific Reports 2018

Targeting *Scn8a* in treatment-resistant temporal lobe epilepsy

Targeting *Scn8a* in treatment-resistant temporal lobe epilepsy

Conclusions

- ↓ Scn8a in cortical circuits leads to widespread reductions in neural excitability and ↓ convulsive seizures
- ↓ Scn8a in the thalamus leads to ↑ non-convulsive thalamocortical seizures
- ↓ Scn8a selectively in the hippocampus is an effective seizure control strategy in models of temporal lobe epilepsy

Some side effects can be avoided using a brain region and cell-type selective targeting strategy

Viral-mediated RNAi approaches may represent a viable alternative to pharmacology for difficult classes of therapeutic targets (e.g. VGSCs)

Acknowledgements

Huguenard Lab John Huguenard

Jordan Sorokin Tanya Weerakody

Escayg Lab Andrew Escayg

Jennifer Wong

Goldin Lab Alan Goldin

Brian Tanaka

