Targeting Voltage-Gated Sodium Channels for the Treatment of Epilepsy

Christopher Makinson, PhD
Postdoctoral Fellow
Stanford University
Department of Neurology and Neurological Sciences
Huguenard Lab
Epilepsy Overview

- Excessive neuronal activity and hypersynchrony
- Affects ~3-4% of people in their lifetime
- Genetic vs. symptomatic epilepsy
- Co-morbidities are common in epilepsy
- ~30% of patients do not respond well current treatments
Background: Voltage-gated sodium channel (VGSC) epilepsies

VGSC genes: Epilepsy risk genes

- **SCN1A**
- **SCN2A**
- **SCN3A**
- **SCN4A**
- **SCN5A**
- **SCN10a**
- **SCN8A**
- **SCN9A**
- **SCN11A**

Red – Brain
Purple – Skeletal Muscle
Blue – Heart
Green – PNS
Black - Ubiquitous

VGSC blockers: Antiepileptic drugs

- Phenytoin
- Carbamazepine
- Lamotrigine
- Felbamate
- Topiramate
- Oxcarbazepine
- Zonisamide
- Rufinamide
- Lacosamide
- Eslicarbazepine acetate
Thalamocortical seizures by loss of Scn8a

Absence seizures detected in the cortex and thalamus

Makinson et al., Neuron 2017
Knockdown of *Scn8a* in RT causes thalamocortical seizures

Makinson et al., *Neuron* 2017
Targeting *Scn8a* in adult animals confers resistance to proconvulsants

Makinson et al., *Neurobiol Dis* 2014
Deletion of *Scn8a* confers resistance to *Scn1a* epilepsies

Makinson et al., *Neuron* 2017
Targeting *Scn8a* for the treatment of temporal lobe epilepsy

Makinson et al., *Neurobiol Dis* 2014
Targeting *Scn8a* reduces epileptiform hippocampal bursting *in vitro*.

Makinson et al., *Neurobiol Dis* 2014
Targeting *Scn8a* in the hippocampus reduces seizures *in vivo*

Makinson et al., *Neurobiol Dis* 2014
Targeting *Scn8a* in treatment-resistant temporal lobe epilepsy

Wong, Makinson et al., *Scientific Reports* 2018
Targeting *Scn8a* in treatment-resistant temporal lobe epilepsy

Wong, Makinson et al., *Scientific Reports* 2018
Targeting $Scn8a$ in treatment-resistant temporal lobe epilepsy

Wong, Makinson et al., *Scientific Reports* 2018
Conclusions

↓ *Scn8a* in cortical circuits leads to widespread reductions in neural excitability and ↓ convulsive seizures

↓ *Scn8a* in the thalamus leads to ↑ non-convulsive thalamocortical seizures

↓ *Scn8a* selectively in the hippocampus is an effective seizure control strategy in models of temporal lobe epilepsy

Some side effects can be avoided using a brain region and cell-type selective targeting strategy

Viral-mediated RNAi approaches may represent a viable alternative to pharmacology for difficult classes of therapeutic targets (e.g. VGSCs)
Acknowledgements

Huguenard Lab
John Huguenard
Jordan Sorokin
Tanya Weerakody

Escayg Lab
Andrew Escayg
Jennifer Wong

Goldin Lab
Alan Goldin
Brian Tanaka