

CHO-Kv1.3 Cell Line

CHO-Kv1.3 Cell Line

The Kv1.3 potassium channel has shown promise as a pharmaceutical target for such diseases as multiple sclerosis, obesity, and more recently, diabetes¹. In order to screen large compound libraries against Kv1.3, a reliable expression system is needed.

Our CHO-Kv1.3 cell line was specifically designed to express high levels of Kv1.3 channels, and to show uniform expression over time.

Our CHO-Kv1.3 cell line:

- Stably expresses Kv1.3 potassium channels
- Validated using electrophysiology and efflux assay
- Suitable for high-throughput screening (HTS)

Fig. 1. I-V response of the CHO-Kv1.3 cell line.

For IC_{50} experiments, a test pulse was applied until the peak current stabilized (Fig. 2).

Fig 2. IC_{50} curve of Agitoxin using the CHO-Kv1.3 cell line as determined by patch clamp.

Electrophysiology

Electrophysiology experiments were conducted using standard patch clamp techniques. The bath solution contained (in mM) 0.90 CaCl₂, 2.67 KCl, 1.47 KHPO₄, 0.50 MgCl₂, 138 NaCl, and 8.10 Na₂HPO₄. The pipette solution contained (in mM) 140 KCl, 1 MgCl₂, 1 EGTA, and 20 HEPES.

For I-V plots, cells were held at -80mV, and then stepped to a depolarizing voltage for 1s to record the peak current.

Rubidium Efflux Assay

Using Aurora Biomed's Rubidium Efflux Assay protocol, basal efflux was measured at 8.5%. After a 6 minute activation time using 63mM KCI, the maximal activation-induced efflux was 49.3% resulting in about six fold window of detection (Fig. 3).

Fig 3. Activation of Kv1.3 in CHO cell line. Activation time of 6 min with 63 mM KCI leads to a window of approximately 41% from basal efflux (blue bar) to activated efflux (red bar).

The concentration-response curves of two commonly known Kv1.3 blockers, Agitoxin and Margatoxin were determined by Rubidium Efflux Assay using the CHO-Kv1.3 cell line (Fig. 4). Table 1 is included to summarize some results and information on our Kv1.3 cell line

Fig. 4. IC_{50} curve of Agitoxin and Margatoxin on CHO-Kv1.3 as determined by Aurora Biomed's Rubidium Efflux Assay.

Table 1. Summary of data for CHO-Kv1.3 cell line.

Cell Line	Activation	Activation	Published EP	Aurora EP	Aurora Flux
	KCI (mM)	period (min)	IC ₅₀ for Agitoxin (nM). ¹	IC ₅₀ for Agitoxin (nM).	IC ₅₀ for Agitoxin (nM).
CHO Kv1.3	63	6	0.2	0.3	0.655

References

- Wulff H. et al., (2003). The voltage-gated Kv1.3 (+) channel in effector memory T cells as new target for MS. J Clin Invest, 111(11): 1703-13.
- 2. Gill S. et al., (2005). Cell-based rubidium flux assay for HTS of Kv1.3 channels. Society for Biomolecular Screening Poster Presentation.