Overriding "Ionic-Checkpoint": A New Strategy to Boost Antitumour Responses of T Lymphocytes

Seow Theng Ong¹, Xuan Rui Ng¹, Lindsay Kua², Aik Seng Ng¹, Fiona Lee Yi Xin², Tan Siqi², Praseetha

Prasannan¹, Ramanuj DasGupta², Iain Tan Bee Huat^{2,3}, K. George Chandy¹, Navin Kumar Verma¹

¹Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore.

²Genome Institute of Singapore, A*STAR Singapore.

³National Cancer Centre Singapore.

There have been substantial advances in harnessing the immune system to fight cancers using immunotherapies and engineered T cells. However, tumor-mediated immunosuppression represents a major obstacle to these approaches. Dying necrotic cells in the tumour microenvironment release substantial amount of intracellular potassium (K^+) causing increased concentration (25-60 mM) of extracellular K^+ ([K⁺]_e). Tumor-infiltrating lymphocytes (TIL) bathed in this [K⁺]_e-rich fluid are suppressed by an "ionic-checkpoint" and fail to mount an efficient antitumor response. Here, we demonstrate that T cells exposed to $[K^+]_e$ -rich media dose-dependently accumulated intracellular K⁺. Presence of high amount of $[K^+]_e$ (50 mM) resulted in significant suppression of T cell functions, including proliferation, cytokine secretion, downstream signal transduction (Akt and mTOR pathway) and antitumor responses. To test if increased K⁺ efflux through K⁺ channels would protect TILs from the suppressive effects of high [K⁺]_e, we patch-clamped TILs isolated from patients with metastatic colorectal cancer and found them to express significant numbers of calcium-activated K_{Ca}3.1 K⁺ channels. SKA-111, a drug that selectively activates $K_{Ca}3.1$, significantly enhanced channel activity in TILs and rescued the cells from high $[K^+]_e$ -induced suppression. This study suggests that pharmacological activators of K_{Ca}3.1 enable TILs to overcome ionic-checkpoint-mediated immune suppression and mount effective antitumor activity.