

ION TRANSPORTER

VALIDATION OF A ROBUST LABEL FREE SCREENING ASSAY FOR NKCC1 COTRANSPORTER

Background

The cotransporter NKCC1 (encoded by SLC12a2) is a membrane protein which mediates the tightly coupled movement of Na⁺, K⁺, and Cl[−] ions across the plasma membrane of many cell types (e.g. brain, heart) with major roles in regulation of cellular volume and intracellular ion concentrations¹. NKCC1 is gaining increased attention as a potential therapeutic target for treating multiple CNS disorders as dysregulation of neuronal chloride homeostasis may be associated with neurological disorders such as epilepsy, chronic neuropathic pain, and autism². Because 2 Cl[−] ions are translocated across the membrane along with 1 Na⁺ ion and 1 K⁺ ion, NKCC1 cotransport is electrically neutral. The non-radioactive rubidium (Rb⁺) flux assay is a method of choice to study non electrogenic pumps, including NKCC1³. Data shown below report the concentration-dependent effects of bumetanide, a selective NKCC1 inhibitor in the presence and in the absence of ouabain, a Na/K ATPase inhibitor. Data were generated from HEK cells transiently expressing NKCC1, using the lon channel Reader (ICR8100) from Aurora BiomedTM.

Figure 1) Representative rubidium influx results obtained from a 96-well plate run on the Ion Channel Reader series (ICR8100). Rubidium influx was normalized to the maximum (negative control: rubidium loading in the absence of compounds) and minimum response (positive control: No rubidium load). Figure 2) Dose response relationships for bumetanide and bumetanide with ouabain (300 μ M). Eight concentrations (0.01 to 30 μ M) model assuming a slope factor (Hill coefficient, nH) equal to 1. Data are shown as mean ± SD.

Conclusion

Bumetanide inhibits rubidium influx in NKCC1 expressing cells with an IC_{50} of 0.36-0.42 $\mu M.$

In the absence of ouabain, the highest concentration of bumetanide (100 μ M) inhibited about 80% of the rubidium influx, indicating that NKCC1 is the main contributor to rubidium influx into the cells. 300 μ M ouabain, combined with 100 μ M bumetanide fully inhibited rubidium influx, indicating that Na/K ATPase's contribution to the rubidium intake is about 20%. These experiments also suggest that no other mechanisms contribute to the rubidium influx measured in those cells.

Using the rubidium flux assay, Aurora Biomed Inc. can determine the concentration-dependent effects of test compounds on the human NKCC1 pump expressed in mammalian cells.

Discover a variety of ion channel and transporter assays available at Aurora Biomed. For more details, please visit our website at <u>https://www.aurorabiomed.com/preclinical-research-services/</u> to explore our assay services.

Instruments utilized

Specifications	ICR 8100	ICR 12000
Throughput	up to 5000 wells/day	up to 60000 well/day
Minimum Sample Volume	50 uL	20 uL
Sensitivity	0.05pp m dection limit	0.05pp m dection limit
Precision	<5% CV	<5% CV

References

- Pedersen SF et al. Physiology and pathophysiology of Na⁺/H⁺ exchange and Na⁺⁻K⁺⁻2Cl- cotransport in the heart, brain and blood. Am J Physiol Regul Integr Comp Physiol 291: R1-R25, 2006.
- 2. Ben-Ari, Y. NKCC1 Chloride Importer Antagonists Attenuate Many Neurological and Psychiatric Disorders. Trends Neurosci. 2017, 40, 536–554.
- 3. Gill S et al. A high-throughput screening assay for NKCC1 cotransporter using nonradioactive rubidium flux technology. Assay Drug Dev Technol 2017; 15(4) 167-177.