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A B S T R A C T   

The improper disposal of effluents containing toxic elements, such as nickel and mercury, can result in the 
gradual deterioration of surface water quality, impacting aquatic ecosystems and human health. Ionically 
imprinted polymers (IIPs) are promising candidates for remediating toxic areas due to their high removal rates 
and selectivity. In this study, multifunctional IIPs were developed using Ni2+ and Hg2+ as template ions and 
dithizone, methacrylic acid, and ethylene glycol dimethacrylate as complexing agent, monomer, and cross- 
linking agent, respectively, to remove Ni (II) and Hg (II) from effluents. The thermal decomposition behavior 
and degradation mechanism of ion imprinted polymers were investigated to address the issue of limited lifespan. 
The kinetic study revealed that the samples showed significant thermal stability, and the IIP-Duo sample 
exhibited higher activation energy compared to the non-imprinted polymer (NIP) and the mono-imprinted 
polymer (IIP), indicating that double impression alters the structure of the polymer and consequently its ther
mal degradation. Three machine learning models were applied to classify the samples according to imprinting, 
successfully predicting 95% or more of the classes correctly without overfitting or overmodelling. The master 
plot method showed that imprinting did not affect the thermal decomposition pathway, with the IIP, IIP-Duo, 
and NIP samples presenting the same mechanism geometrical contraction model (R3) at a conversion rate be
tween 0.4 and 0.9. These findings suggest that multifunctional IIPs are promising materials for remediating areas 
impacted by toxic elements.   

1. Introduction 

Environmental concerns related to water have become increasingly 
relevant with the rapid growth of the global economy and the acceler
ated pace of industrialization. These factors have created difficulties 
with the supply of clean drinking water and the adequate recycling of 
wastewater, leading to a deterioration of surface water quality. (Yusof 
et al., 2019). Despite intense governmental regulations aimed at regu
lating the release of industrial wastewater, heavy metals from these 
discharges can potentially contaminate surface water resources. It is 
important to continue enforcing regulations and implementing mea
sures to prevent such contamination and protect water quality [1]. 

According to the World Health Organization (WHO), toxic bio
accumulation metals, such as nickel, lead, mercury, and cadmium are 

listed as top priority contaminants, once it presents high toxicity even at 
low concentrations, causing several damages to the environment and the 
living beings [2]. For instance, the presence of nickel in water is 
attributed to the leaching of rocks and sediments in addition to the 
disposal of effluents from battery and electroplating industries [3,4]. 
High concentrations of nickel can lead to serious health problems, such 
as dermatitis, kidney and lung damage, and can also favor the produc
tion of cancer cells [5,6]. The World Health Organization (WHO) has 
established a concentration limit of 20 μg/L of total nickel in drinking 
water [2,7]. 

On the other hand, mercury is widely used in the manufacturing 
process of various products including lamps, batteries, and dental fill
ings. It can be released into the environment due to natural occurrences 
such as volcanic eruptions and mineral degradation, causing pollution of 
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water, soil, and air [8,9]. Its main anthropogenic sources are related to 
waste from thermoelectric power plants, chlorine and alkali plants, 
dental amalgam, and incineration of medical and household waste. Due 
to its high level of toxicity and bioaccumulation in the ecosystem, the 
World Health Organization (WHO) has set a maximum concentration of 
10 μg/L of mercury in wastewater and a maximum allowable limit of 1 
μg/L in drinking water [2,10]. 

In this context, several studies in recent years have been the target of 
investigation in the search for a route to remove these contaminants 
present in effluents, among them there are: liquid-liquid extraction [11], 
adsorption [12], chemical precipitation, coagulation, ion exchange and 
reverse osmosis. However, these techniques often result in the genera
tion of secondary waste, making them inefficient [13–16]. To tackle this 
issue, Ion Imprinted Polymers (IIP) have emerged as a promising tech
nique, due to the generation of materials with high selectivity, low cost, 
and ease of preparation [17–19]. These materials are synthesized to 
promote selectivity and ion recognition, which is advantageous for 
analyzing low concentrations and ultra-trace levels [20–23]. 

The synthesis of IIP, through the Bulk method, occurs through the 
reaction of a functional monomer, a cross-linking agent, a radical 
initiator, and a template ion. This process occurs in three steps: (i) - 
formation of a complex between the metal ion of interest (template ion) 
and the monomer; (ii) - polymerization, to incorporate the metal ion of 
interest into the polymeric network or the linear polymer; and finally 
occurs (iii) - the removal of the template ion to generate the selective 
cavity in the polymer [24,25]. It is also possible add simultaneously two 
template ions [26–28] to remove selectively more ions or ionic species in 
the reaction medium. 

Once the IIP’s are main used as a high functional and selective 
adsorbent, this type of materials has also a short life cycle, once the 
adsorption capacity tends to decay after successive adsorption- 
desorption cycles. An old-fashioned way to dispose these materials is 
dumping in landfills or even its incineration [29]. These strategies can 
impact significantly the environment, since these materials are loaded 
with toxic metals, carcinogenic compounds and/or other harmful sub
stances precursors [30,31]. The components loaded in the adsorbent can 
also alters the thermal decomposition and possible mechanisms associ
ated with the incineration/pyrolysis of these materials [32]. The kinetic 
modelling of the decomposition plays a crucial role for the better 
comprehension of these materials’ behavior under different work con
ditions [33]. 

In recent years, the use of isoconversional methods such as Flynn- 
Wall-Ozawa (FWO) [34,35] and Distributed Activation Energy Method 
(DAEM) [36] has gained increasing attention due to their versatility in 
modeling various complex solid-state reaction systems, including 
biomass [37–39], co-pyrolysis systems (biomass + plastics) [40,41] and 
conventional polymeric materials as PET [42], Polylactic Acid (PLA) 
[43], PVC [30], polyurethane [39] and polystyrene [44]. While con
ventional pyrolysis and catalytic pyrolysis of polymeric materials have 
been widely studied, particularly for plastics and waste plastics, there is 
a lack of literature concerning the thermal stability, mechanisms, and 
kinetics of imprinted polymers thermal decomposition. Understanding 
the physicochemical characteristics of imprinted polymers is essential 
for their appropriate utilization and safe disposal as a new material. To 
improve the evaluation and interpretation of pyrolysis features, machine 
learning and/or chemometrics tools can be utilized [45]. However, the 
use of machine learning algorithms to model or predict pyrolytic char
acteristics of polymers remains limited in the literature [46–49], 
particularly for imprinted polymers. The present work aims to synthe
size, characterize, and evaluate the pyrolysis behavior of polymers based 
on methylacrylic acid (MAA) for the selective removal of Ni(II) and/or 
Hg(II) ions. The influence of the amount of monomer and 
double/mono/non-imprinting methodologies was also analyzed to 
reduce synthesis time and reagent consumption. Furthermore, to better 
understand the kinetics of the chain polymerization/depolymerization 
reaction and aspects related to the decomposition of these polymers, the 

thermal stability and pyrolysis kinetic parameters were analyzed using 
DAEM and FWO methodologies. Based on the kinetic data, three 
different machine learning classification algorithms, support vector 
machine, logistic regression, and Adaboost, were evaluated to better 
understand the influence of imprinting methodologies on pyrolysis 
characteristics. 

2. Experimental 

2.1. Reagents and solutions 

All reagents used in the synthesis of IIP were of analytical grade. 
Methacrylic acid (MAA), 2,2′-azo-isobutyronitrile (AIBN), 98% ethylene 
glycol dimethacrylate (EGDMA) all from Sigma-Aldrich, 99.5% mercury 
(II) chloride, 99.5% nickel (II) chloride, 99.7% dimethyl sulfoxide 
(DMSO) and ethanol PA from Vetec (Rio de Janeiro, RJ, Brazil), 98% 
1,5-diphenylthiocarbazone (Fluka), acetonitrile (ACN) for HPLC, 
gradient grade, ≥99.9% and hydrochloric acid (HCl) from Merck and 
ultrapure water obtained from a model OS10LX water purification sys
tem (Gehaka®, São Paulo, SP, Brazil). The hydrochloric acid solutions 
were prepared by diluting with ultrapure water. 

2.2. Characterization 

2.2.1. Infrared spectroscopy 
A Fourier transform infrared spectrometer model FT-IR Spectrum 

100 (PerkinElmer, Germany) was used to obtain the attenuated total 
reflectance (ATR) spectrum in the infrared region from 4000 to 600 
cm− 1 with 16 scans per sample. 

2.2.2. Thermal analysis 
The obtained materials were characterized by thermogravimetric 

analysis coupled with differential thermal analysis (TG-DTA) using a 
thermogravimetric analyzer model TG-60 (Shimadzu), mass 8 mg ±
0.01 mg, heating rate of 5, 10 and 15 ◦C min− 1, in a nitrogen atmosphere 
with a flow rate of 50 mL min− 1, in a platinum crucible. 

2.3. Polymer synthesis 

2.3.1. IIP - double ion imprinted (Ni2+/Hg2+) 
The followed methodology agrees with the one proposed by Lins [50]. 

In this work, the synthesis was optimized by reducing the amount of 
monomer and increasing the heating temperature from 80 ◦C to 100 ◦C. 

In a rounded bottom glass flask (100 mL) it was dissolved, with rapid 
stirring, 0.2 mmol of 1,5-diphenyldithiocarbazone (Dithizone-(HDz)) in 
a mixture of solvents (1:1) ACN/DMSO for 10 min in order to have total 
solubilization of the dithizone. Then 0.05 mmol of mercury (II) chloride 
and 0.05 mmol of nickel (II) chloride were added to the mixture, stirred 
for another 30 min to form the mercury (II) dithizonate (Hg(HDz)2) and 
nickel (II) dithizonate (Ni(HDz)2) complexes. Subsequently, while 
maintaining stirring, 32 mmol of MAA, 64 mmol of EGDMA, and 0.08 
mmol of AIBN were added, in that order. Immediately an ultrapure 99.9 
% nitrogen gas purge was performed inside the glass flask in order to 
remove the oxygen released in the synthesis. It was then sealed and 
placed in an oil bath at 100 ◦C. The polymerization of IIP occurred in 17 
min, obtaining a brown solid named IIP-Hg/Ni. The solid obtained was 
dried in an oven at 80 ◦C for 2 h, macerated and sieved at 80 mesh. 

The removal of the template ion was performed with hydrochloric 
acid (HCl), varying concentrations from 0.5 to 1.5 mol L− 1, being stirred 
for 30 min on a shaking table. After stirring, it was filtered and read in 
the Flame Atomic Absorption Spectrophotometer to check if the tem
plate ion was completed removed. All tests were performed three times. 

2.3.2. NIP – (non-imprinted polymer) and IIP – ion imprinted polymer 
(Ni2+) 

The same methodology as mentioned before was employed for this 
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synthesis, however for the IIP Ni2+ was used only the nickel (II) chloride 
as ion template. For the NIP synthesis there is no addition of ion tem
plate, furthermore the polymer was dried using a rotary evaporator in 
the following conditions: rotation 40 rpm, temperature 60 ◦C. 

2.3.3. Template ion leaching 
The determination of Hg2+ ions was performed using the Atomic 

Fluorescence Spectrometer model LUMINA 3300 (Aurora instruments, 
Canada), A hollow cathode lamp (HCL) was used for all the mercury 
measurements using the wavelength at 253.6 nm, current of 30 mA, 
PMT of 360 V. 

The determination of Ni2+ was performed using Flame Atomic Ab
sorption Spectrophotometer, model: SensAA Dual, (GBC Scientific) with 
wavelength at 232.0 nm, current of 4.0 mA and deuterium lamp for 
background radiation correction. 

2.4. Distributed activated energy model (DAEM) 

The DAEM methodology considers first-order irreversible and par
allel reactions, each with its own frequency factor called the Arrhenius 
pre-exponential factor (A) and activation energy. This model requires at 
least three experimental datasets, which can be obtained at different 
heating rates (β) using thermogravimetric analysis [51,52]. According 
with this model, developed by Miura & Maki, all frequency factors (A) 
differ only in activation energy, and the quantity of independent re
actions is large enough to allow for a continuous Gaussian distribution of 
activation energy. Hence, a Double-Gaussian model was developed, as 
described by the equation below [53–55]. 

ln
(

β
T2

)

= −
Ea
RT

+ ln
(

A R
Ea

)

+ 0, 6075 (1)  

where: 
β is the heating rate (in K min− 1); 
A is the pre-exponential factor; 
R is the universal gas constant; 
Ea the activation energy (in kJ mol− 1); 
T is the temperature in K. 
Using a graph of lnβ/T2 vs. 1/T the kinetic parameters can be 

obtained. 

2.5. Flynn-Wall-Ozawa (FWO) isoconversional method 

The kinetic parameters of the thermal decomposition of the printed 
polymers were determined using the Flynn-Wall-Ozawa (FWO) method 
[38], which is derived from Doyle’s approximation for the Arrhenius 
equation [56]. The data obtained from thermogravimetric analysis were 
analyzed using the Ozawa’s method equation, which can be written in 
its logarithmic form as follows 

ln(β)= ln
(

A Ea
g(∝) R

)

− 5.331 −

(

1.052 •
Ea
R T

)

(2)  

where: 
β is the heating rate (in K min− 1); 
A is the pre-exponential factor; 
R is the universal gas constant; 
Ea the activation energy (in kJ mol− 1); 
T is the temperature in K. 
The parameters of the Arrhenius equation, such as activation energy 

and pre-exponential factor, can be determined graphically using the lnβ 
vs. 1/T plot. The slope of the straight line found in the plot provides the 
activation energy, while the linear coefficient yields the pre-exponential 
factor. 

2.6. Artificial intelligence approach 

For the artificial intelligence approach, kinetic data from both DAEM 
and FWO kinetic methods were used as input, including the mean 
temperature for each fraction (α). Each step of thermal decomposition 
with α between 0.25 and 0.9 (excluding solvents and water evaporation) 
was evaluated as a single dataset with 7 features. The datasets were then 
classified according to their specifications (imprinted, double- 
imprinted, and non-imprinted) using the scheme presented below. 

2.6.1. Machine learning algorithms 
All machine learning algorithms were implemented using the Scikit- 

learn package from the Orange software (version 3.25). Orange [57] is a 
Python-based visual programming software that enables the imple
mentation of predetermined machine learning algorithms. Users can 
adjust the algorithms’ parameters to suit specific data needs. 

2.6.1.1. Support vector machine. The type of algorithm used was Sup
port Vector Machine (SVM) with the following parameters: Cost 
regression (c) = 1.0, Regression loss epsilon (ε) = 0.1, Kernel type RBF, 
and numerical tolerance = 0.001. 

SVM was first proposed by Vapnick [58] and works by mapping the 
original data points to a high-dimensional space where the classification 
problem becomes simpler. The mapping is done by choosing a suitable 
kernel function [59]. 

2.6.1.2. Adaboost. The machine learning algorithm used in this project 
was Adaboost with a tree base estimator. The algorithm employed 50 
estimators, a learning rate of 1.0, and a linear regression loss function. 

Adaboost was first proposed by Freund & Schapire [60] and focuses 
on solving the most difficult classification problem in the dataset using 
an algorithm as the base estimator. The base estimator is employed 
successively by the Adaboost algorithm, setting different weights during 
each test round. At the end of each round, the base estimator outputs a 
hypothesis that is evaluated by the algorithm, and the weights are 
redistributed to minimize classification errors. After the training process 
is complete, Adaboost combines all the intermediate hypotheses to 
create one final hypothesis in a sequential ensemble method. 

2.6.1.3. Logistic regression. In this project, logistic regression was used 
with Lasso regularization (L1) and a regularization strength of C = 1. 
The Lasso regularization method is applied to improve the prediction 
accuracy and interpretability of regression models [61]. Logistic 
regression is a statistical method that estimates the probability of an 
event occurring based on the dataset training input by combining one or 
more independent variables linearly. Its main goal is to find the decision 
boundaries among the classes and provides probability as a response 
[62]. 

2.6.2. Algorithm validation and verification 
All classification models in this project were trained using the data 

and validated using the k-fold cross-validation methodology (k = 10). 
The validation method involved dividing the dataset into k parts, of 
which k-1 parts were used for modeling (training), and the remaining 
part was reserved for testing. The dataset was tested ten times, with each 
test using a different fold. 

To evaluate and compare the classification models generated by the 
different algorithms, a confusion matrix was used [63] The confusion 
matrix is a table that shows the actual classes in the horizontal lines and 
the predicted classes in the columns. It provides a detailed evaluation of 
the algorithm’s accuracy, identifying false positives, false negatives, true 
positives, and true negatives during the prediction process. 

The Rank feature algorithm from Scikit-learn Python package [64] 
was applied to evaluate the classification results based on the features. 
This was used to select the most important three features that contribute 
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to the classification, using different scoring methods such as information 
gain, gain ratio, Gini, ANOVA, Chi2, ReliefF, and Fast Correlation Based 
Filter (FBCF). 

2.7. Master plot method 

Criado’s method [65,66] was applied to accurately determine the 
mechanism of polymeric solid-state reaction. The method is defined by a 
function: 

Z(α)=
dα/dt

β
π(x)T (3)  

where x = Ea
RT and π(x) are an approximation of the temperature integral, 

which cannot be expressed in simplicity. In this study, the Senum - Yang 
approximation was used, which presents errors lower than 10− 5% when 
x > 20 [67]. 

Experimental curve Z (α) is defined by Poletto [68] as: 

Z(α)= dα
dt

Ea
R

e
Ea
RT P(x) (4) 

Being P(x) the expression of the fourth rational of Senum - Yang 
[67]: 

P(x) =
e− x

x
.

x3 + 18x2 + 86x + 96
x4 + 20x3 + 120x2 + 240x + 120

(5)  

where x = Ea/RT. 
Master plot as a function of the conversion factor (α) can be obtained 

according to the following equation: 

Z(α)= f (α).g(α) (6) 

Since f (α) and g (α) are different solid-state reaction models. 
In order to increase the precision in the estimation of the degradation 

mechanism of the samples, the features selected previously on section 
2.7, from the best suitable kinetic method for the classification, were 
used in equations (4) and (5). 

To increase the precision in the determination of the decomposition 
mechanism, the present work uses the Criado’s method modification 
proposed by Castro and collaborators [45], that proposes the use of the 

algebraic equation derived from the Pythagorean Theorem, to measure 
the distance between two points in a Cartesian plane, since the x axis is 
shared by both experimental and master curves (see Fig. 1). 

3. Results and discussion 

3.1. Fourier transform infrared spectrometry (FTIR) 

The spectra obtained (Fig. 2) of the NIP, IIP-Ni2+ and IIP-Ni2+/Hg2+

samples present great similarities, differing only in the intensity of the 
absorptions, displacements of some bands between the imprinted 
polymers and the non-imprinted polymer. Such results are consistent 
with the results obtained by Lins [50], indicating that the polymer 
structure remained similar. The experimental spectra were also 
compared with the monomer spectra (Methacrylic Acid), found at 
Spectral Database for Organic Compounds (SDBS) [69]. 

On the NIP sample, is observed a very discrete hydroxyl band 
referring to the MAA monomer, as can be seen in Fig. 3. This possibly 
occurs as a consequence of inter/intramolecular hydrogen bonds in the 
polymer chain, but a wide and not very intense band is observed be
tween 3600 and 3300 cm− 1 in samples IIP-Ni2+ and IIP-Ni2+/Hg2+, 
which may also be related to the presence of hydroxyl (-OH) due to 
moisture absorption, that can be associated with the sample storage. 

In region I of Fig. 2, range 3060-2830 cm− 1, we note the presence of 
weak absorptions that are attributed to stretching of Csp

3 -H and Csp
2 -H 

bonds. In this spectra region, the NIP sample presents lower intensity, if 
compared with the other samples. The main reason for this phenomenon 
is related to the specific surface area ratio, once according Planinšek 
[70], the particle size and the specific surface area directly influence the 
absorption and reflectance. 

The region II that corresponds to the absorption in the range of 1720 
cm− 1, is associated with the C=O stretching, that in this case refers to 
the carbonyl band present in the methacrylic acid (monomer), as 
observed in polymers synthesized using the same monomer, cross- 
linking agent and radical initiator. On the reference monomer spectra 
(Methacrylic Acid, MAA) [69], this carbonyl band is at 1697 cm− 1, 
indicating that after polymerization the band was displaced, being 
strong evidence that there was consumption of MAA during the syn
thesis [71,72]. Next to this band, in region III of Fig. 2, there is a weak 

Fig. 1. Artificial intelligence approach for thermal degradation prediction (art done by the author).  
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C=C stretching band at 1636 cm− 1 (for all three samples), while in the 
reference spectra [69] the band associated to the vinyl group appears 
intense. Other bands in the region from 3000 to 2600 cm− 1, which are 
present in the spectrum of MAA [69] also do not appear in the produced 
polymers, confirming that there was complete polymerization of the 
MAA molecule to form the polymer chain (Yusof et al., 2019). 

The absorptions in the range of 1455 and 1388 cm− 1, observed in the 
region (IV) of Fig. 2, are attributed to CH2 and CH3 folding, respectively. 
In region (V), the bands between 1256 and 1142 cm− 1 are C–O bond 
stretching, characteristic of ester, referring to ethylene glycol dimetha
crylate [39]. The spectra of the printed polymers, IIP-Ni2+ and 
IIP-Ni2+/Hg2+, present equal bands with the same intensity, which 
shows that the simultaneous printing does not interfere in the formation 
of the polymer chain, since the metal is incorporated into the ligand to 

form a template before reacting with the monomer. 
Table 1 summarizes the bands found on the imprinted polymers 

according to the regions previously described. 

3.2. Thermogravimetric analysis 

The profiles of the TGA curves for imprinted and non-imprinted 
polymers, shown in Fig. 3, are similar. Analyzing the TG curves and 
the DTG curves (Fig. 4), is noticed the existence of a main mass loss 
event, between 201.5 and 498.6 ◦C for NIP, 209–507 ◦C for IIP-Ni2+ and 
between 215.2 and 514.7 ◦C for IIP-Ni2+/Hg2+, totaling a mass loss of 
96.29%, 96.94% and 96.35% respectively. From 500 ◦C onwards, it is 
observed that there is practically no mass variation. 

In the first stage, between 50 and 150 ◦C, there is a very low mass loss 

Fig. 2. Infrared spectra by Attenuated Total Reflection (FTIR-ATR) of the samples NIP, IIP-Ni2+ and IIP-Ni2+/Hg2+ (a) 4000 to 500 cm− 1 and (b) 2500 to 500 cm− 1.  

Fig. 3. Thermogravimetric curves at heating rates of 5, 10 and 15 ◦C min− 1 of (a) NIP; (b) IIP-Ni2+ and (c) IIP-Ni2+/Hg2+.  
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associated with the evaporation of water and other volatile solvents used 
in the synthesis. The fact that the mass loss is quite subtle indicates that 
there is little solvent and water residue, because the polymers were dried 
properly, as evidenced by the FTIR results (Fig. 2); the second event has 
greater mass loss and is related to the decomposition of the polymer 
chain, between 200 and 514 ◦C, approximately. A shorter decomposition 
interval in single-event curves, represents a greater the thermal stability 
of the material when heated [54,73,74]. 

The analysis of the TGA graphs at heating rates of 5, 10 and 15 min-1 
show a shift in the region of maximum thermal decomposition to higher 
temperatures when the heating rate is increased, as shown in Fig. 3. This 
phenomenon is associated with hysteresis, which causes an increase in 
the temperature gradient within the sample [74–76]. 

As evidenced in the DTG (Fig. 4), the temperature at which the mass 
loss velocity shows a maximum value is 417.6 ◦C for IIP-Ni2+ and at 
425.8 ◦C for the IIP-Ni2+/Hg2+ sample and 266.3 and 430.2 ◦C for the 
NIP, indicating that first a slower reaction occurs and then a second 
reaction happens faster for the NIP. There is a slight mass loss over 
500 ◦C and it is associated with the end of mercury dithizonate com
plexes and nickel dithizonate complexes inside of the polymeric chains 
[77]. 

3.3. Kinetic study 

The kinetic parameters obtained in FWO and DAEM methods for 
each sample are summarized in the kinetic table data (Supplementary 
material) and graphed in Fig. 5. 

As can be observed in Fig. 5, the main decomposition event is related 
to the beginning of the depolymerization step of the sample. This event 
is also observed in the DTG curve (Fig. 4) and starts before the con
version range α = 0.1, for the IIP-Ni2+ and IIP-Ni2+/Hg2+ imprinted 
polymers, at 209.0 and 215.2 ◦C respectively. 

For the FWO method, the highest activation energies are observed at 
203.88, 214.26 and 219.82 kJ mol− 1 for NIP, IIP-Ni2+ and IIP-Ni2+/ 
Hg2+, respectively, at different conversion ranges (α), which is common 
in decomposition of complex matrix samples, as polymers [78,79]. 

Both methods show an increasing curve in activation energy (Ea) for 
the samples IIP-Ni2+ and IIP-Ni2+/Hg2+, while for the NIP, in the con
version ranges 0.05 to 0.25 shows a decrease in Ea values, which is 
evidenced by the correlation coefficient R2, in the kinetic table (sup
plementary material), below 0.9000. These coefficients are low for the 
three samples in the conversion ranges cited. In this sense, for further 
evaluations only the conversion range (α) between 0.25 and 0.9 was 
employed. 

The values of the activation energies (Ea) of the imprinted polymers 
are close to and higher than the values obtained for the non-imprinted 
polymer. This corroborates that NIP has less stable structure than IIPs 
due to the absence of the template ion during synthesis [28,80,81]. 

It is observed that in the conversion range from 0.25 to 0.90, the Ea 
values for the IIPs are close in both methods, averaging 207 kJ mol− 1 

(FWO) and 218 kJ mol-1 (DAEM) close for the IIP-Ni2+ sample. How
ever, for the IIP-Ni2+/Hg2+ sample the conversion range that shows a 
low variation of Ea ranging from 0.30 to 0.90 and have an average of 
215 kJ mol− 1 (FWO) and 226.41 kJ mol− 1 (DAEM). At the initial α, the 
IIP-Ni2+/Hg2+ sample shows higher Ea values in both methods (72.3 kJ 

Table 1 
Main bands and its respective absorptions observed in FTIR spectra for NIP, IIP- 
Ni2+ and IIP-Ni2+/Hg2+ samples.  

Region Bands Wavenumber (cm− 1) 

NIP IIP-Ni2+ IIP-Ni2+/Hg2+

I ʋCsp
3 -H e Csp

2 -H 3045–2840 3060–2840 3060–2830 
II ʋC=O 1722 1718 1717 
III ʋC=C 1636 1636 1636 
IV CH2 and CH3 

folding 
1452 and 
1388 

1455 and 
1388 

1455 and 
1388 

V ʋC-O 1256 and 
1148 

1250 and 
1142 

1250 and 
1142  

Fig. 4. TG thermogravimetric curves and their derivatives at a heating rate of 15 ◦C min− 1 of (a) NIP; (b) IIP-Ni2+ and (c) IIP-Ni2+/Hg2+.  
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mol− 1 in FWO and 81.4 kJ mol− 1 in DAEM), compared to the other 
samples. The Ea values continue to increase until α = 0.9, at approxi
mately 450 ◦C, indicating that the decomposition of the polymer chain 
occurs gradually. The variation of Ea values is consistent with what is 
expected for complex polymeric samples, which do not present a well- 
defined decomposition kinetics, as is the case with ion-printed poly
mers [82,83]. 

It is also observed that the ionic imprinting (with one or two template 
ions) influences the decomposition kinetics of the polymers obtained, 
since the Ea values of the IIP-Ni2+ sample present thermal stability 
(according with results in both methods), varying little between α =
0.30 to 0.90, with a graphical profile with low slope, similar to a hori
zontal straight line. On the other hand, the IIP-Ni2+/Hg2+ sample 
presents increasing values in this same range, resulting in a curvilinear 
graphical profile, as observed in Fig. 5. The NIP sample presents an 
increasing curve, without a plateau of constant Ea [45]. 

According to Mortezaeikia and collaborators, an apparently constant 
value of Ea over a certain conversion range indicates that decomposition 
occurs through a single step, while gradual and significant changes in Ea 
are indications of a change in the overall decomposition mechanism, 
corroborating what is evidenced by the TG/DTG curve [52,79]. 

Although the IIP-Ni2+/Hg2+ sample presents higher activation en
ergy values in the two analyzed methods, as we can observe in Table 4, 
double imprinting does not confer higher thermal stability to the ma
terial, because with α between 0.05 and 0.90, the temperature range for 
the IIP-Ni2+/Hg2+ sample is 272.7–446.7 ◦C, while for the IIP-Ni2+ this 

temperature range goes from 295.1 to 445.2 ◦C, presenting a ΔT lower 
than the range of the IIP-Ni2+/Hg2+ sample. According to Mothé, the 
smaller the range of the initial and final decomposition temperature, the 
more stable the material is for thermal decomposition [74]. 

For better data visualization, a heatmap containing the kinetic triplet 
(normalized data) from both FWO and DAEM methods was built as 
shown in Fig. 6. In general, the values of activation energy for the non- 
imprinted polymer (NIP) are lower compared to the imprinted samples. 
The pre-exponential factor (lnA) and reaction velocity rate (lnK) also 
have lower values than IIP-Duo and IIP. Through the heatmap visuali
zation, a pattern can be observed in the kinetic data: NIP < IIP < IIP- 
Duo. In the kinetic data table (supplementary material), the R2 values of 
the lines for obtaining Ea are shown, and it is observed that both 
methods are suitable for the thermokinetic behavior modelling of the 
samples. 

The degradation of the complex formed between the ligand (dithi
zone) and the mold ions, which was only observed as a discrete event in 
the TG curve (Fig. 3), does not appear in the kinetic study because it 
occurs at temperatures above 500 ◦C, beyond the range of degradation 
(α) analyzed (0.05–0.9) [77]. 

3.4. Assessment of machine learning algorithms 

The classification results can be properly evaluated using a confusion 
matrix, a square matrix (GxG) whose rows and columns are associated 
with actual data and predictions respectively [84]. 

Fig. 5. Activation energy graph (obtained by FWO and DAEM methods) as function of temperature: (a) NIP; (b) IIP-Ni2+ and (c) IIP-Ni2+/Hg2+.  
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According to the confusion matrix analysis shown in Fig. 7, the 
Adaboost algorithm correctly classified the imprinted and non- 
imprinted polymers with 100% accuracy, compared to 97.8% and 
95.8% for the SVM and Logistic Regression algorithms, respectively. The 
strong performance of the Adaboost algorithm in classification can be 
attributed to its nature: the train data is divided and a model is created 
for each split of the dataset. These intermediate models are assigned 
weights according to their accuracy, and are then added together to 
create the final model, which is a strategic approach to increase the 
overall accuracy of classification [85]. It is also important to note that 
overfitting was not observed during classification using this algorithm. 
Overfitting occurs when a model fits the training data well but is inef
ficient in predicting new results or includes more features than neces
sary for prediction [86]. To properly evaluate if the model overfit the 
dataset, insignificant features were removed from the model training 
according to the rank shown in Fig. 8, and a new model was generated. 

The efficiency and accuracy metrics for the prediction model did not 
change significantly after the removal of these insignificant features. 

Additionally, cross-validation was employed to further evaluate the 
generated model. This validation method involves testing the model on 
unseen data (data that the model has not learned before) using the k-fold 
methodology [87], where the dataset was split into 10 folds. Nine folds 
were used to train the algorithm, and the remaining fold was used to test 
the model [45]. 

Fig. 8 shows that both the class distribution and the number of fea
tures per class are balanced, and there is no missing data. This is 
important because imbalanced datasets can significantly degrade algo
rithm performance, reducing overall accuracy and leading to misclas
sification of minority class samples or treating them as data noise. 
Therefore, having a balanced dataset is crucial for accurate decision- 
making [88]. 

The SVM and Logistic Regression algorithms misclassified the final 

Table 2 
Distances between master plot theoretical models and experimental curves for NIP sample.   

A2 A3 A4 R1 R2 R3 D1 D2 D3 D4 F1 F2 F3 L2 

0,25 0,306 0205 0,148 0451 0,243 0157 0,544 0727 0,754 0157 0,536 0284 0,506 0257 
0,3 0,248 0164 0,119 0366 0,191 0122 0,483 0638 0,670 0126 0,451 0251 0,455 0231 
0,35 0,188 0123 0,089 0276 0,140 0089 0,398 0520 0,556 0096 0,355 0207 0,385 0190 
0,4 0,127 0082 0,059 0185 0,091 0057 0,288 0376 0,409 0066 0,248 0152 0,291 0137 
0,45 0,064 0041 0,029 0093 0,044 0027 0,155 0203 0,226 0034 0,130 0084 0,166 0073 
0,5 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 
0,55 0,067 0042 0,029 0093 0,042 0026 0,178 0236 0,277 0037 0,145 0104 0,228 0081 
0,6 0,137 0085 0,059 0187 0,083 0050 0,377 0509 0,615 0076 0,309 0237 0,550 0170 
0,65 0,212 0129 0,090 0281 0,121 0072 0,599 0823 1030 0,118 0496 0,410 1022 0,265 
0,7 0,293 0177 0,123 0375 0,158 0094 0,841 1183 1542 0,162 0712 0,642 1753 0,365 
0,75 0,383 0229 0,158 0469 0,194 0113 1105 1598 2186 0,210 0969 0,969 2969 0,471 
0,8 0,486 0287 0,197 0562 0,227 0132 1390 2079 3013 0,260 1284 1462 5212 0,582 
0,85 0,610 0354 0,242 0655 0,259 0149 1697 2641 4117 0,315 1692 2289 10,067 0,697 
0,9 0,770 0440 0,298 0748 0,289 0164 2024 3313 5694 0,372 2270 3948 23,948 0,817  

Table 3 
Distances between master plot theoretical models and experimental curves for IIP sample.   

A2 A3 A4 R1 R2 R3 D1 D2 D3 D4 F1 F2 F3 L2 

0,25 0,323 0221 0,165 0467 0,260 0174 0,544 0744 0,771 0140 0,552 0301 0,523 0240 
0,3 0,258 0174 0,128 0375 0,201 0132 0,483 0647 0,680 0116 0,461 0261 0,465 0221 
0,35 0,194 0129 0,094 0282 0,145 0094 0,398 0526 0,562 0091 0,361 0213 0,390 0185 
0,4 0,130 0085 0,062 0188 0,094 0060 0,288 0379 0,412 0063 0,251 0155 0,294 0134 
0,45 0,066 0042 0,031 0094 0,046 0029 0,155 0204 0,227 0033 0,132 0085 0,168 0072 
0,5 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 
0,55 0,067 0042 0,030 0094 0,043 0026 0,178 0237 0,277 0036 0,146 0105 0,229 0081 
0,6 0,138 0086 0,061 0188 0,084 0051 0,377 0510 0,616 0075 0,310 0238 0,551 0169 
0,65 0,213 0131 0,092 0282 0,123 0074 0,599 0824 1031 0,116 0497 0,411 1023 0,263 
0,7 0,294 0178 0,124 0376 0,159 0095 0,841 1184 1544 0,161 0713 0,643 1754 0,364 
0,75 0,384 0230 0,159 0470 0,195 0115 1105 1600 2188 0,208 0970 0,970 2970 0,470 
0,8 0,488 0288 0,198 0564 0,229 0133 1390 2080 3014 0,259 1286 1464 5214 0,580 
0,85 0,611 0356 0,243 0657 0,261 0150 1697 2642 4118 0,313 1694 2290 10,068 0,696 
0,9 0,772 0441 0,299 0749 0,291 0166 2024 3314 5696 0,371 2271 3949 23,949 0,816  

Table 4 
Distances between master plot theoretical models and experimental curves for IIP Duo sample.   

A2 A3 A4 R1 R2 R3 D1 D2 D3 D4 F1 F2 F3 L2 

0,25 0,321 0220 0,163 0465 0,258 0172 0,544 0742 0,769 0142 0,550 0299 0,521 0242 
0,3 0,257 0173 0,127 0374 0,199 0131 0,483 0646 0,679 0117 0,459 0260 0,464 0222 
0,35 0,193 0128 0,093 0281 0,145 0093 0,398 0525 0,561 0092 0,360 0212 0,389 0185 
0,4 0,130 0085 0,061 0188 0,094 0060 0,288 0379 0,412 0063 0,251 0155 0,294 0134 
0,45 0,065 0042 0,030 0094 0,045 0029 0,155 0204 0,227 0033 0,132 0085 0,168 0072 
0,5 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 0,000 0000 
0,55 0,067 0042 0,030 0094 0,043 0026 0,178 0237 0,277 0036 0,146 0105 0,229 0081 
0,6 0,138 0086 0,061 0188 0,084 0051 0,377 0510 0,616 0074 0,310 0238 0,551 0169 
0,65 0,213 0131 0,092 0282 0,123 0074 0,599 0824 1031 0,116 0497 0,411 1023 0,263 
0,7 0,294 0179 0,124 0376 0,160 0095 0,841 1185 1544 0,161 0713 0,643 1754 0,364 
0,75 0,385 0230 0,160 0470 0,195 0115 1105 1600 2188 0,208 0970 0,970 2970 0,469 
0,8 0,488 0288 0,198 0564 0,229 0133 1390 2080 3014 0,259 1286 1464 5214 0,580 
0,85 0,611 0356 0,243 0657 0,261 0150 1697 2642 4118 0,313 1694 2290 10,068 0,696 
0,9 0,771 0440 0,298 0748 0,290 0164 2024 3313 5694 0,372 2270 3948 23,948 0,817  
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and/or initial stage (α = 0.25 and/or 0.9) of the double ion imprinted 
decomposition as a non-imprinted polymer. These polymers are pro
duced from the polymerization of methacrylic acid (MAA) and dithi
zone. This misclassification can be attributed to a region where there is 
no relationship between any monomer in the polymeric chain next to the 
ion complex during thermal decomposition. 

Fig. 9 shows the ranking of features (variables) that contribute to 
better classification of polymers. According to the figure, the kinetic 
triplet from the Distributed Activation Energy Model (DAEM) is the most 
suitable for machine learning classification prediction of imprinted and 
non-imprinted polymers. This can be attributed to the nature of the 
DAEM, as it is well adapted for complex pyrolysis reactions and is able to 
describe kinetic parameters over a wide range of temperatures and 
heating rates [89]. Additionally, the method has shown good results 
when modelling the thermal decomposition of polymers [39]. 

3.5. Master plot method 

Fig. 10 illustrates the thermal decomposition mechanism for the 
polymer samples (NIP, IIP, and IIP Duo) in the α = 0.25 to 0.9 range, 
which covers the process of thermal degradation/depolymerization of 
the polymeric chain in a solid-state in a nitrogen atmosphere. In this 
figure, the straight lines in black represent the experimental curve of the 
polymers, where each point relates to a specific decomposition stage of 

the solid (α). The overlap between the points of the black line and the 
points of a theoretical curve determines the experimental solid-state 
mechanism of the data. 

Tables 2–4 provide a summary of the distances between each point of 
the experimental sample and theoretical mechanism sample, according 
to the methodology proposed by Castro and collaborators [45]. The 
tables highlight the mechanism that shows the minimum distance 
compared to each master plot. The combined analysis of the graph and 
the table reveals that there is a complex multistep mechanism occurring 
during the pyrolysis of NIP, IIP, and IIP Duo. 

The initial stage (α = 0.25–0.3) of the thermal decomposition of the 
NIP sample (Non-imprinted polymer) is associated with the Avrami- 
Erofeyev mechanism (A4), which is related to nucleation and growth. 
This mechanism has also been reported for polystyrene in a nitrogen 
atmosphere [44]. 

According to the master plot analysis (Fig. 9, Table 3 and 4), the 
polymer chain decomposition for imprinted polymers (IIP and IIP Duo) 
occurs following two different mechanisms.  

1. For α between 0.25 and 0.35, the processes are associated with a 
Ginstling-Brounshtein mechanism (D4), a deceleratory diffusion 
model that describes the decrease of the reaction rate with reaction 
progress [90]. The volatiles evolution reactions during the polymer 
degradation are related to diffusion models since these processes are 

Fig. 6. Heat map analysis of kinetic triplets (lnA, Ea and lnK for IIP Double, IIP and NIP).  

Fig. 7. Confusion matrix for predicted classification between different machine learning algorithms (a) Adaboost; (b) Logistic Regression and (c) Support Vector 
Machine (SVM). 
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controlled by the diffusive escape of gases but still have a solid 
barrier that slows down the reaction rate [91].  

2. For α between 0.35 and 0.9, the mechanism observed is a R3 model, a 
phase boundary-controlled reaction (contracting volume). The R3 
mechanism assumes that nucleation occurs quickly on the surface of 
the solid, and the rate of degradation is controlled by the resulting 
interaction surface towards the solid core [90,92]. A similar pattern 
of thermal decomposition mechanism, a D-type mechanism followed 
by an R-type, was also found when modelling the polylactic acid 
polymer decomposition [43]. 

It is also important to note that the three samples, NIP, IIP, and IIP 
Duo, with α between 0.4 and 0.9 show the same degradation mecha
nism, R3, revealing that the polymer ion-imprinting does not affect the 
thermal decomposition mechanism in this range. 

4. Conclusions 

This work describes the use of machine learning algorithms to clas
sify imprinted and non-imprinted polymers based on pyrolysis kinetic 
data obtained using the Distributed Activation Energy Method (DAEM) 
and Flynn-Wal-Ozawa Method. Additionally, the chemical structure, 
thermal decomposition, and pyrolysis mechanisms associated with ion- 
imprinted and non-imprinted polymers were evaluated. 

Ionic imprinted polymers were synthesized, including an IIP with 
one template ion (IIP–Ni2+) and a bifunctional IIP with two template 
ions (IIP–Ni2+/Hg2+, or IIP-Duo). Comparing the FTIR spectra of the 
monomer and all the samples indicated that all the monomer was 
consumed during the synthesis to form the polymer chain. 

The thermogravimetric (TG) curves of the polymers show a similar 
and single main mass loss event, occurring between 201.5 and 498.6 ◦C 
for NIP, 209–507 ◦C for IIP-Ni2+, and 215.2–514.7 ◦C for IIP-Ni2+/Hg2+, 
which is mainly associated with thermal depolymerization. Beyond 
500 ◦C, there is practically no mass variation. 

Fig. 8. Feature and class distribution: Non imprinted polymer (green); Ion imprinted (blue); Double Ion imprinted (red)  

Fig. 9. Feature ranking for the proper classification of the samples.  
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The kinetic study is consistent with other studies on samples of 
complex polymeric matrix, with the R2 values indicating the methods 
are suitable for the samples. It is also observed that ionic imprinting, 
with one or two template ions, influences the decomposition kinetics of 
the polymers obtained. The Ea values of the IIP-Ni2+ sample show 
thermal stability, as indicated by results from both kinetic methods, with 
little variation between α = 0.30 and 0.90. On the other hand, the IIP- 
Ni2+/Hg2+ and NIP samples show increasing values in this same range. 

The IIP-Ni2+/Hg2+ sample generally presents higher activation en
ergy values, while double imprinting does not increase the thermal 
stability of the material, as observed by the difference of temperature 
range with α between 0.05 and 0.90 for both samples. 

The machine learning classification of polymers revealed that the 
Adaboost algorithm accurately classified imprinted and non-imprinted 
polymers with 100% accuracy based on the kinetic data, compared to 
97.8% and 95.8% for SVM and Logistic regression algorithms, respec
tively. Adaboost’s performance can be attributed to its adaptive nature 
in creating small models for the whole dataset and combining them to 
produce a robust and reliable model. 

Analysis of the master plot shows that the polymer chain decompo
sition for imprinted polymers (IIP and IIP Duo) occurs through two 
different mechanisms: (I) with α between 0.25 and 0.35 associated with 
a deceleratory diffusion model (D4), and (II) with α between 0.35 and 
0.9, a phase boundary-controlled reaction (contracting volume), an R3 
model. It is important to note that all three samples (NIP, IIP, and IIP 
Duo) with α between 0.4 and 0.9 exhibit the same degradation mecha
nism, R3, indicating that polymer ion-imprinting does not affect the 
thermal decomposition mechanism in this range. 

Further evaluations are necessary to analyze the amount and type of 
gases released during the pyrolytic process, as well as check for any 
potential release of toxic metals during this stage. 
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[67] L.A. Pérez-Maqueda, J.M. Criado, Accuracy of Senum and yang’s approximations 
to the Arrhenius integral, J Therm Anal Calorim 60 (2000) 909–915, https://doi. 
org/10.1023/A:1010115926340. 

[68] M. Poletto, A.J. Zattera, R.M.C. Santana, Thermal decomposition of wood: kinetics 
and degradation mechanisms, Bioresour Technol 126 (2012) 7–12, https://doi. 
org/10.1016/j.biortech.2012.08.133. 

[69] National Institute of Advanced Industrial Science and Technology (AIST) Infrared 
Spectra of Methacrylic Acid; SDBS No.: 1222.. 
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